

A Model You Can Hear: Audio Identification with Playable Prototypes

Motivation

Context:

- Recent methods often rely on representations in high-dimensional abstract space. Those methods perform well but are difficult to interpret.

Contributions:

- We adapt the **transformation-invariant clustering** paradigm for audio in both supervised and unsupervised settings.

For each input audio clip x of label y characterized by its logspectrogram with T time steps and F frequency bins, we define the following reconstruction model and losses for the k-th prototype. Deep Transformation-Invariant Prototyping:

Method

$$\mathcal{R}_{k}(x)[t] = \mathcal{T}_{\mathbf{H}_{k}(x)[t]}^{\mathsf{high}} \circ \mathcal{T}_{\mathbf{L}_{k}(x)[t]}^{\mathsf{low}} \circ \mathcal{T}_{\mathbf{S}_{k}(x)[t]}^{\mathsf{pitch}} \circ \mathcal{T}_{\mathbf{G}_{k}(x)[t]}^{\mathsf{gain}}(P_{k})$$

Supervising Reconstruction and Cross-Entropy:

- We provide an audio identification model based on **prototypical sounds** that can be heard directly.

- Our model reaches state-of-the-art results for audio classification and clustering tasks while remaining easily interpretable.

$$\mathcal{L}_{\mathsf{rec}}(x,k) = \frac{1}{T} \sum_{t=1}^{T} ||x[t] - \mathcal{R}_k(x)[t]||^2$$

$$\mathcal{L}_{ce}(x,y) = -\log\left(\exp\left(-\beta\mathcal{L}_{rec}(x,y)\right) / \sum_{k=1}^{K}\exp\left(-\beta\mathcal{L}_{rec}(x,k)\right)\right)$$

Method Overview

Given an **input sound**, we predict for each prototype a *gain*, a *pitch* shift, as well as *low* and *high frequency filters* at each timestamp to generate the **output**. Prototypes and transformations are learned jointly using a reconstruction loss in either a supervised or unsupervised setting.

Audio Identification Results

	OA	AA
SOL [1,2]		
Autoencoder + K-means	28.7	12.3
† APNet [7] + K-means	37.3	18.2
Ours w/o supervision	34.5	15.4

LibriSpeech [6]

Autoencoder + K-means	11.0	11.1
† APNet [7] + K-means	36.3	36.4
Ours w/o supervision	48.6	49.5

Clustering Results. Clustering performances on the test sets. †: Note that APNet requires labels at training time.

$$\mathcal{L}_{\text{clustering}}(x) = \min_{k=1}^{K} \mathcal{L}_{\text{rec}}(x,k)$$

Meaningful and Interpretable Prototypes

- Prototypes learn characteristics of their assigned class that go beyond simple harmonic components.

- The model captures elements of the **timbre**, such as their spectral envelopes under various conditions: notes, techniques, words, etc.
- Such results pave the way for **instrumental or vocal timber transfers** as natural applications.

	OA	AA	\mathcal{L}_{rec}
SOL [1,2]			
Direct Classification	97.8	94.8	
APNet [7]	95.3	91.3	0.1
Ours w supervision	99.3	95.8	2.6
LibriSpeech [6]			
Direct Classification	99.4	99.5	
APNet [7]	97.8	97.8	0.2
Ours w supervision	99.9	99.9	2.6

Classification Results. Accuracy and reconstruction error.

 $\mathcal{L}_{\mathsf{classif}}(x,y) = \mathcal{L}_{\mathsf{rec}}(x,y) + \lambda_{\mathsf{ce}}\mathcal{L}_{\mathsf{ce}}(x,y)$

Jeannie (F)Caitlin Kelly (F)Juan Federico (M)Charlie (M)Leslie Walden (M)Prototypes learned on the speech dataset LibriSpeech [6]

[1] Guillaume Ballet *et al*. Journées d'Informatique Musicale, 1999 [2] Carmine Emanuele Cella *et al*. ICMC, 2020 [3] Romain Loiseau *et al*. 3DV, 2021 [4] Vincent Lostanlen *et al*. DLfM, 2018 [5] Tom Monnier *et al*. NeurIPS, 2020 [6] Vassil Panayotov *et al*. ICASSP, 2015 [7] Pablo Zinemanas *et al*. Electronics, 2021