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Learnable Earth Parser: Discovering 3D Prototypes in Aerial Scans
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Overview Learnable Earth Parser

Goal: provide a practical and interpretable tool for analyzing 3D scenes for aerial Method Overview.

surveying and mapping, without relying on application-specific user annotations. S slots » Our model approximates an input
Approach: a probabilistic reconstruction model that decomposes inputs into a set of Slot activation o o point cloud X with 5 slot models.
learned prototypical 3D shapes, for unsupervised instance/semantic segmentation. 00 O prototype cnoice » Each slot maps X to an affine 3D
‘Learnable Earth Parser . T E E r > (Olg 5; 55 55 :!eformaltaiog_ﬁ’[;(X), a s;ch{th ac_tiyat-
; ) O O - ion probability «,, and the join
E L L aftine - - proba?bilities 6;---, BE of the slcl)t be-
s ~ < transform — [/ ing activated and choosing one of the
L earnable prototypes T (X) P - — A, (X) K prototype point clouds P!, --- PX.
° » The output M (X) of an activated
g i slot s is obtained by applying 7, (X)
¥ input X y reconstruction M (X) to its most likely prototype.

-arge aerial 3D scan . i e ] - Non-activated slots do not con-

B Vegetation I Ground M Windturbine Instance segmentation P P o P tribute to the output.

Method Earth Parser Dataset Unsupervised Qualitative and Quantitative Results

Learnable shape prototypes: Earth Parser Dataset: Annotated aerial LIDAR scans in diverse real-world environments. .
Following [4], we define K point clouds P!, ..., P* that we refer to as prototypes. SRR ¥
Each prototype is meant to represent a single instance of a recurring 3D structure in pe
the considered scene X. The points’ coordinates are free parameters of the model. e |
Scene reconstruction model: B et | Prediction 1
M(X)= ] M (X),with M (X)=Y" =T, (X)[P"]ifb, =k . |
=1...S
Saszl ; i
Probabilistic modeling: A AL A . PSR p BuBINERE aiih B
a and b as random variables following (multi)-Bernoulli distributions ; _Power plant ¥ * Ground Trath Srediclion Ground Truth

p(as = 1) = a, : probability that the slot s is activated ;
plas = 1,bs = k) = % : probability it is activated and selects prototype k.

Unsupervised training losses:
Slots average of the expected dis-

tance between M (X) and X:

Average over all points = of X of the |
expected distance between x and its  Leov (M, X) = x| > Eup| min d(z, Ms(X))] -
closest point in the reconstruction: X sex slas=1

eaningful and Interpretable Prototypes

Learned Prototypes.
Selected learned proto-
types on different scenes.
We ShOW three prot()types Q«Q’O‘ %Q((\‘ Crop fields Forest Greenhouses Marina Power plant Urban Windturbines
among those selected

S
Lace(M.X) = 5 3. B, [ (ML (X).X)]

Cham. mloU Cham. mloU Cham. mloU Cham. mloU Cham. mloU Cham. mloU Cham. mloU

M. 1 our  POSE-ProCEsSing g-meags (.2 N X/ — e — 715 — 33 — 44 — 428 — %5 — 878

- - : : S SEEETC uperQuadrics . — . — . — . — . — . — 50 —

The final unsupervised loss is the sum of reconstruction losses and regularization: e o lection DTI-Sprites [2] 25D+ +  6.10 832 1459 402 536 420 6.6 414 536 200 299 473 36.19 259
) ' AtlasNetv2[3] 3D+ «  1.07 431 158 71.4 056 491 073 421 045 416 063 488 947 48.1

x| Lace (M, X) + Loy (M, X) | + AactLact + Aslot Lslot + Aproto Lproto - Power plant (3/4) Greenhouses (3/5) Ours 3D+ ~ 072 96.9 0.88 837 040 913 082 787 044 522 029 832 6.65 93.4
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