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Overview
Goal: provide a practical and interpretable tool for analyzing 3D scenes for aerial
surveying and mapping, without relying on application-specific user annotations.
Approach: a probabilistic reconstruction model that decomposes inputs into a set of
learned prototypical 3D shapes, for unsupervised instance/semantic segmentation.
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Earth Parser Dataset
Earth Parser Dataset: Annotated aerial LiDAR scans in diverse real-world environments.
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Method Overview.
• Our model approximates an input
point cloud X with S slot models.

• Each slot maps X to an affine 3D
deformation Ts(X), a slot activa-
tion probability αs, and the joint
probabilities β1

s ,⋯, βK
s of the slot be-

ing activated and choosing one of the
K prototype point clouds P1,⋯,PK .

• The outputMs(X) of an activated
slot s is obtained by applying Ts(X)
to its most likely prototype.

• Non-activated slots do not con-
tribute to the output.

Method
Learnable shape prototypes:
Following [4], we define K point clouds P1,⋯,PK that we refer to as prototypes.
Each prototype is meant to represent a single instance of a recurring 3D structure in
the considered scene X. The points’ coordinates are free parameters of the model.
Scene reconstruction model:

M(X) = ⋃
s=1⋯S
as=1

Ms(X) , withMs(X) =Yk
s = Ts(X)[Pk] if bs = k .

Probabilistic modeling:
a and b as random variables following (multi)-Bernoulli distributions ;
p(as = 1) = αs : probability that the slot s is activated ;
p(as = 1, bs = k) = βk

s : probability it is activated and selects prototype k.

Unsupervised training losses:
Slots average of the expected dis-
tance betweenMs(X) and X: Lacc(M,X) = 1

S

S

∑
s=1

Eas,bs [d (Ms(X),X)] .

Average over all points x of X of the
expected distance between x and its
closest point in the reconstruction:

Lcov(M,X) = 1

∣X∣ ∑x∈X
Ea,b [ min

s∣as=1
d (x,Ms(X))] .

The final unsupervised loss is the sum of reconstruction losses and regularization:

EX [Lacc (M,X) +Lcov (M,X)] + λactLact + λslotLslot + λprotoLproto .

Meaningful and Interpretable Prototypes

Learned Prototypes.
Selected learned proto-
types on different scenes.
We show three prototypes
among those selected
by our post-processing
selection.
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Unsupervised Qualitative and Quantitative Results
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Cham. mIoU Cham. mIoU Cham. mIoU Cham. mIoU Cham. mIoU Cham. mIoU Cham. mIoU

k-means (i,z) ✗ ✓ — 93.8 — 71.5 — 39.3 — 41.4 — 42.8 — 56.5 — 87.6
SuperQuadrics [1] 3D ✗ 0.86 — 1.04 — 0.60 — 0.93 — 0.58 — 0.40 — 13.50 —
DTI-Sprites [2] 2.5D+i ✓ 6.10 83.2 14.59 40.2 5.36 42.0 6.16 41.4 5.36 29.0 2.99 47.3 36.19 25.9
AtlasNet v2 [3] 3D+i ✓ 1.07 43.1 1.58 71.4 0.56 49.1 0.73 42.1 0.45 41.6 0.63 48.8 9.47 48.1
Ours 3D+i ✓ 0.72 96.9 0.88 83.7 0.40 91.3 0.82 78.7 0.44 52.2 0.29 83.2 6.65 93.4
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