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Introduction
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3D Scene Rendering from images

…

NeRF

3D Reconstruction: NeRF-related models, SfM and MVS (COLMAP), etc.

Yu et al., Plenoxels: Radiance Fields without Neural Networks (CVPR 2022)
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https://docs.google.com/file/d/1NShFPZje2bcHt-dIDMHvesCHybr5YCdQ/preview


Questions:

1. How do we acquire these images?
2. Can we learn how to do it?

➔ Path Planning
➔ Next Best View (NBV)

3D Scene Rendering from images
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➔ Long standing problem in robotics
➔ Depth sensors are commonly used (video stream, so even 

with RGB we consider we have access to partial point clouds)
➔ Classic approaches: Usually, discretization into known and 

unknown voxels, then ray-casting entropy metrics. Very slow, 
not suited to real-time exploration.

➔ Surface Coverage is a common metric to evaluate NBV

Next Best View (NBV)
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What about learning-based approaches?

➔ Volumetric approaches: Rely on voxelization. Suited to path 
planning in scenes, but not scalable and far less precision.

➔ Surface approaches: Work directly on the dense point cloud. 
Still rely on a single global encoding to regress NBV => Only 
suited to floating, small scale, single objects inside a sphere.

Next Best View (NBV)
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Our approach: 
SCONE
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Input

1. Partial point clouds 
gathered by a LiDAR-class 
sensor or reconstructed from 
an RGB video stream (see DM)

2. Camera poses

3. Bounding Box (if needed, 
to delimit exploration area)
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Strategy

SCONE: Surface Coverage Optimization in Unknown Environments 
by Volumetric Integration (NeurIPS 2022)

1. Make a prediction about unseen geometry in the scene

2. Predict visibility of surface points you can’t see right now

NBV = Camera with the most new visible surface points 
(highest coverage gain)
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Predict unseen geometry
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1. Predict unseen surface
2. Compute surface coverage for any camera from this surface.

In practice, does not work in unknown environments.

Predicting a surface requires high confidence in prediction.

Naive approach
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The need for a volumetric, probabilistic mapping

Camera ct

Observation Predicting Surface Volumetric Probability

seen

unseen

Camera ct+1 Camera ct+1
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Predict an Occupancy Probability Field

Our needs:

1. Virtually infinite resolution 

Deep Implicit Function (very trendy in CV)

2. Generalization and Scalability

Focus on local features rather than a single global encoding
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Predict an Occupancy Probability Field
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Predict an Occupancy Probability Field
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Predict an Occupancy Probability Field
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Predict an Occupancy Probability Field

Supervision: MSE between predicted occupancy probabilities and GT occupancy map
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Estimate surface coverage gain
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Maximizing Surface Coverage with Volumetric Integration

Surface Coverage is a surface metric. Yet, we want to integrate on a volumetric 
occupancy probability field.

➔ “Relax” the definition of visibility to a volumetric visibility field
➔ Asymptotically, maximizing the volumetric integral is equivalent to maximizing 

the surface integral

More details in the paper.
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Predicting Visibility Gain

How?

We want to avoid ray-casting operations.

Instead, we use directional, attention-based features 
between proxy points!
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Predicting Visibility Gain
1. Sample Proxy Points in the scene, based on their occupancy probability
2. For any new camera pose c, we predict a Visibility Gain Score for each 

probabilistic proxy point
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Predicting Visibility Gain: Input

Proxy Points with 
Occupancy Probability

Camera ct
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Predicting Visibility Gain: Input

Proxy Points with 
Occupancy Probability

Camera ct

Spherical Harmonics 
encoding

Camera History
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Predicting Visibility Gain: Output

Proxy Points with Visibility Gain 
in direction of new camera

Camera ct+1

Spherical Harmonics 
encoding

Visibility Gain
in all directions
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Predicting Coverage Gain

Supervision: Softmax then KL Divergence between predicted volumetric coverage 
gains and GT surface coverage gains, over a distribution of cameras
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Results
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Single Object Reconstruction: Quantitative Results

27



Active View Planning in 3D scenes: Qualitative Results

Colosseum
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Active View Planning in 3D scenes: Qualitative Results

Pisa Cathedral
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Active View Planning in 3D scenes: Qualitative Results

Fushimi Castle
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Active View Planning in 3D scenes: Qualitative Results

Christ the Redeemer
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Active View Planning in 3D scenes: Qualitative Results

Eiffel Tower
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Active View Planning in 3D scenes: Qualitative Results

Alhambra Palace
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Active View Planning in 3D scenes: Qualitative Results

Manhattan Bridge
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Active View Planning in 3D scenes: Qualitative Results

Pantheon (Rome, not Paris hehe)
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Active View Planning in 3D scenes: Qualitative Results

Dunnotar Castle
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Active View Planning in 3D scenes: Qualitative Results

Statue of Liberty
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Active View Planning in 3D scenes: Qualitative Results

Bannerman Castle
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Active View Planning in 3D scenes: Qualitative Results

Neuschwanstein Castle
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Active View Planning in 3D scenes: Qualitative Results

Natural History Museum, London
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Active View Planning in 3D scenes: Quantitative Results
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Thank you!
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