Unsupervised Multi-Domains Adaptation for Semantic Segmentation of Very High Resolution Aerial Images

Candidate: Valerio Marsocci 13/01/2023 Institut Géographique National Supervisors: prof. Clement Mallet Nicolas Gonthier, Ph.D. Anatol Garioud, Ph.D. prof. Simone Scardapane

Think of a **climate mitigation** project

What do we need?

Land cover map to avoid land consumption

What if we do not have it?

What if there is a **domain shift**?

Ground truth

Prediction

Unsupervised Domain Adaptation can help us

Ground truth

Prediction

What we will see

- 1. Unsupervised Domain Adaptation
- 2. FLAIR Dataset
- 3. Widespread methodologies
- 4. Our methodology
- 5. Conclusions

In this space you will find the

TAKEAWAYS!

Unsupervised Domain Adaptation (UDA)

Almost what we have already seen

Definition

"Unsupervised Domain Adaptation is a learning framework to transfer knowledge learned from source domains with a large number of annotated training examples to target domains with unlabeled data only"

UDA.

Datasets

Office-Home

classification

synthetic to real

To date no dataset for UDA for EO

Foggy Cityscapes

Cityscapes

GTA5

Open questions

Still a lot to do in UDA (especially for RS)

• **few** data (and few methods) for "**many domains**" UDA for semantic segmentation

 few proper data (and few methods) for EO UDA

(a) Vaihingen image

(b) Ground truth

(c) Potsdam image

(d) Ground truth

FLAIR Dataset

A huge multi-domains dataset for EO semantic segmentation

French Land cover from Aerospace ImageRy

- 1725-1800 patches per each domain (50)
- 512x512 pixel per patch with 25 cm GSD

• 5 bands (RGB + IR + elevation)

• 19 classes

One of the first, huge dataset for UDA for RS

Metadata

CV/EO datasets are not only made of images

```
• domain info
```

- the geo **coordinates** (XY) of the centroid and the mean altitude (Z)
- the **date** and **hour** of the acquisition
- the **camera** type

```
{"IMG_000717":
{"domain": "D004_2021", "zone": "Z8_NF",
"patch_centroid_x": 924009.6,
"patch_centroid_y": 6339451.2,
"patch_centroid_z": 1661.9399414062,
"date": "2021-05-28",
"time": "08h06",
"camera": "UCE-M3-f120-s07"},
```

Image level analysis

High intra- and inter-domain variance at image level

Widespread Methodologies

Spoiler: transformers are the best

AdaptSegNet

Adversarial training reduces domain shift

DAFormer

Sampling rare classes and using ImageNet features help

UDA for RS

EO data need their own customized models

Our methodology

or How I learnt to use geo coords

The data we used

we used a RGB subset

- 10 domains for training (D06, D08, D13, D17, D23, D29, D33, D58, D67, D74)
- 3 domains for testing (D64, D68, D71)
- RGB channels

in UDA we use Xs, XT and Ys

Starting with the baseline

Constraining the features

some easy strategy (e.g. style loss) can improve performance

net	mloU (%)
baseline	38.82
+style loss	39.83

Using geo metadata

net	mloU (%)	params (M)
baseline	38.82	1.9
+style loss	39.83	1.9
GeoMT_base	40.22	270

EO data need their own customized models

Using time metadata

more metadata ≠	better results
-----------------	----------------

net	mloU (%)	params (M)
baseline	38.82	1.9
+style loss	39.83	1.9
GeoMT_base	40.22	270
TimeGeoMT	35.25	405

Geo metadata

net	noise (km)	1/frequency (-)	mloU (%)	params (M)
baseline	-	-	38.82	1.9
GeoMT_base	-	10000	40.22	270
GeoMT_noise	±30	10000	40.33	270
GeoMT_noise_lowerfrq	±30	20000	41.38	270
GeoMT_noisier_lowerfrq	±50	20000	39.4	270

less precise geoinfo are beneficial

(E,	$\mathbf{N})$

- center the coordinates (EPSG:2154)
- [NEW] add noise
- transform to positional encodings ([NEW] with a lower frequency)

Finally shaping the multitask module Y_{s} X_{S} E D

reducing the number of parameters

Finally shaping the multitask module

reducing the number of parameters

Scaling up the model

size doesn't matter that much

net	mloU (%)	params (M)
baseline	38.82	1.9
GeoMT_UNet	41.26	3.3
GeoMT_ResUNet18	43.29	32.7
GeoMT_ResUNet34	42.76	38.9
GeoMT_ResUNet50	41.03	60.1

Comparison

net	mloU (%)	params (M)
AdaptSegNet	23.05	99
ADVENT	12.8	99
DAFormer	42.10	85
UDA_for_RS	43.41	85
ours	43.29	33

Conclusions

if you fell asleep, please awake now

Conclusions

• UDA is a really useful task, slightly **under investigated** in EO

• **FLAIR** is a huge, interesting, **real-world** EO semantic segmentation dataset

• using **metadata** in a good way could boost the model

• scaling up to the whole dataset with new models and idea would be fruitful

Some literature references:

Yi-Hsuan Tsai*, Wei-Chih Hung*, Samuel Schulter, Kihyuk Sohn, Ming-Hsuan Yang and Manmohan Chandraker, Learning to Adapt Structured Output Space for Semantic Segmentation, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018

Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu Cord, Patrick Pérez, ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019

Hoyer, Lukas and Dai, Dengxin and Van Gool, Luc, DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022

Li, W.; Gao, H.; Su, Y.; Momanyi, B.M. Unsupervised Domain Adaptation for Remote Sensing Semantic Segmentation with Transformer. Remote Sens. 2022, 14, 4942. https://doi.org/10.3390/rs14194942

Anatol Garioud, Stephane Peillet, Sebastien Giordano, FLAIR: French Land cover from Aerial ImageRy, 2022

Gatys, L. A., Ecker, A. S., & Bethge, M. (2015). A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576.

Kumar Ayush, Burak Uzkent, Chenlin Meng, Kumar Tanmay, Marshall Burke, David Lobell, and Stefano Ermon. Geography-aware self-supervised learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision 2021

Baudoux, Luc and Inglada, Jordi and Mallet, Clément, Toward a Yearly Country-Scale CORINE Land-Cover Map without Using Images: A Map Translation Approach, Remote Sensing, 2021

Time for <u>questions</u>, <u>remarks</u> and <u>ideas</u>!

Thank you!

me flexing 0.1% gain of my model

me at my wedding

