Pixel-wise Agricultural Image Time Series Classification: Comparisons and a Deformable Prototype-based Approach

> Elliot Vincent - 31/03/2023 – IGN Reading group –

About Me

2nd year PhD student

Research interests: Unsupervised learning, Remote sensing, Prototype-based methods

About Me

Previous projects \rightarrow mainly, unsupervised prototype learning

- Unsupervised Layered Image Decomposition into Object Prototypes
 T. Monnier, E. Vincent, J. Ponce, M. Aubry ICCV 2021
- A Model You Can Hear: Audio Identification with Playable Prototypes
 R. Loiseau, B. Bouvier, Y. Teytaut, E. Vincent, M. Aubry, L. Landrieu ISMIR 2022
- Pixel-wise Agricultural Image Time Series Classification: Comparison and a Deformable Prototype-based Approach

E. Vincent, J. Ponce, M. Aubry – Preprint 2023

About Me

Previous projects \rightarrow mainly, unsupervised prototype learning

- Unsupervised Layered Image Decomposition into Object Prototypes
 T. Monnier, E. Vincent, J. Ponce, M. Aubry ICCV 2021
- A Model You Can Hear: Audio Identification with Playable Prototypes
 R. Loiseau, B. Bouvier, Y. Teytaut, E. Vincent, M. Aubry, L. Landrieu ISMIR 2022
- Pixel-wise Agricultural Image Time Series Classification: Comparison and a Deformable Prototype-based Approach
 E. Vincent, J. Ponce, M. Aubry – Preprint 2023

Today's program!

Task

Agricultural satellite image time series (SITS) classification

Time

Context

Agricultural satellite image time series (SITS) classification

Time

Whole-image methods

- Explicitly leverage the image structure
- U-Net + temporal aggregation (3D-Unet)
- U-Net + temporal attention encoder (UTAE)

> Designed for SITS

R. Rustowicz et al. Semantic segmentation of crop type in Africa: A novel dataset and analysis of deep learning methods. CVPR workshops 2019.

V. Sainte Fare Garnot et al. Panoptic segmentation of satellite image time series with convolutional temporal attention networks. CVPR 2021.

Context

Agricultural satellite image time series (SITS) classification

Time

Time series-based methods

- Whole-series based (1NN, prototype-based)
- Feature based (BoP, shapelet based, deep encoders)

Not necessarily designed for SITS specifically

 \rightarrow generic methods for multivariate time series classification (MTSC)

V. Sainte Fare Garnot et al. Lightweight temporal self-attention for classifying satellite images time series. AALTD 2020.

W. Tang et al. Omni-scale CNNs: a simple and effective kernel size configuration for time series classification. ICLR 2022.

Context

Methods introduced so far \rightarrow Supervised

- require vast amount of labeled data
- low interpretability

What about unsupervised methods for MTSC?

- K-means (Euclidean distance, DTW)
- K-means on learned features
 - (= Unsupervised representation learning + K-means)

F. Petitjean et al. Clustering of satellite image time series under Time Warping. MultiTemp 2011.

J.-Y. Franceschi et al. Unsupervised scalable representation learning for multivariate time series. NeurIPS 2019

Contributions

- Introduce a prototype-based method
 - Insisting on **unsupervised learning**
 - And interpretability

- Benchmark multivariate time series classification
 - supervised and unsupervised
 - 4 recent SITS datasets

 x_i $X c_1$ $egin{array}{lll} egin{array}{lll} & c_2 \ egin{array}{lll} egin{array}{lll} & egin{array}{lll} & \mathcal{T}_{\hateta_1}(c_1) \ egin{array}{lll} egin{array}{lll} & egin{array}{lll} & \mathcal{T}_{\hateta_2}(c_2) \ egin{array}{lll} & egin{array}{lll} & \mathcal{T}_{\hateta_2}(c_2) \ \end{array} \end{array}$

DTI clustering

Time

Our Method: Transformations

IR

ÍR

Unsupervised reconstruction loss

$${\mathcal{L}}_{ ext{rec}}(heta, {\mathbf{P}}) = \sum_x \min_k \left| \left| x - {\mathbf{R}}_k(x, heta, {\mathbf{P}}_k)
ight|
ight|^2$$

Dataset	Country	T	C	Satellite(s)	Daily	K	Train/Test shift
PASTIS [17]	11	406	10	Sentinel 2	×	19	Spat.
TimeSen2Crop [58]	=	363	9	Sentinel 2	×	16	Spat.
SA [27]		244	4	PlanetScope	1	5	Spat.
DENETHOR [28]	-	365	4	PlanetScope	1	9	Spat. & Temp.

• 4 different locations

Dataset	Country	Т	C	Satellite(s)	Daily	K	Train/Test shift
PASTIS [17]		406	10	Sentinel 2	×	19	Spat.
TimeSen2Crop [58]	=	363	9	Sentinel 2	×	16	Spat.
SA [27]		244	4	PlanetScope	1	5	Spat.
DENETHOR [28]	-	365	4	PlanetScope	1	9	Spat. & Temp.

- 4 different locations
- Various sizes on both dimensions

Dataset	Country	T	C	Satellite(s)	Daily	K	Train/Test shift
PASTIS [17]	11	406	10	Sentinel 2	×	19	Spat.
TimeSen2Crop [58]	=	363	9	Sentinel 2	×	16	Spat.
SA [27]		244	4	PlanetScope	1	5	Spat.
DENETHOR [28]	-	365	4	PlanetScope	1	9	Spat. & Temp.

Sentinel 2

- 4 different locations
- Various sizes on both dimensions
- Different acquisition parameters

Dataset	Country	T	C	Satellite(s)	Daily	K	Train/Test shift	
PASTIS [17]		406	10	Sentinel 2	×	19	Spat.	n
TimeSen2Crop [58]	=	363	9	Sentinel 2	×	16	Spat.	
SA [27]		244	4	PlanetScope	1	5	Spat.	
DENETHOR [28]	-	365	4	PlanetScope	1	9	Spat. & Temp.	

- 4 different locations
- Various sizes on both dimensions
- Different acquisition parameters
- +/- challenging

Image from DENETHOR paper

1 SITS = 1 crop type

Training and inference details

1) Train on all Train/Val/Test sets

2) Each prototype assigned to the class it represents the most on a sample of Train set

Training and inference details

1) Train on all Train/Val/Test sets

2) Each prototype assigned to the class it represents the most on a sample of Train set

3) Each input TS assigned to the label of its closest transformed prototype

Input

Training and inference details

1) Train on all Train/Val/Test sets

2) Each prototype assigned to the class it represents the most on a sample of Train set

3) Each input TS assigned to the label of its closest transformed prototype on Test set

Metrics: Overall Accuracy (OA), Mean Accuracy (MA)

Input (label = wheat)

Unsupervised									
	#param	PA	STIS	TimeSen2Crop			SA	DENETHOR	
Method	(x1000)	OA↑	MA↑	OA↑	MA↑	OA↑	MA↑	OA↑	MA↑
K-means-DTW [39]	520			40.5	26.8		_	_	
USRL [15]+K-means	290	63.9	20.4	34.9	23.6	60.9	48.6	54.0	46.4
DTAN [49]+K-means	646	65.6	21.4	47.7	29.3	60.5	48.6	46.3	36.9
K-means [6]	520	69.0	29.8	49.5	32.5	61.9	47.8	57.2	48.5
$\underline{\circ}$ + time warping	1 209	69.1	30.4	52.3	36.0	64.1	51.7	57.6	51.1
\vec{O} + offset	$1\ 373$	67.7	28.6	52.0	35.5	63.6	50.4	58.5	52.6

Can also be trained under supervision!

Supervised												
	#param	PA	STIS	TimeSe	en2Crop		SA	DENETHOR				
Method	(x1000)	OA↑	MA↑	OA↑	MA↑	OA↑	MA↑	OA↑	MA↑			
UTAE [17]	$1\ 087$	83.4	77.7			_	_		—			
MLP + LTAE [16]	320	80.6	65.9	88.7	80.9	67.4	63.7	55.6	43.6			
OS-CNN [52]	4 729	81.3	68.1	87.9	81.2	64.6	60.3	49.0	39.2			
TapNet [61]	$1\ 882$	77.4	69.5	83.9	83.0	69.4	62.5	61.5	60.6			
MLSTM-FCN [26]	490	44.4	10.9	58.7	44.0	56.1	47.9	58.2	48.3			
1NN [10]	0	65.8	40.1	43.9	35.0	60.7	54.9	56.7	48.2			
1NN-DTW [48]	0			32.2	23.0							
NCC [13]	77	56.5	48.4	57.4	49.5	51.3	46.4	61.3	55.5			
$\underline{\circ}$ + time warping	427	56.2	51.4	59.9	52.3	54.5	49.7	62.4	56.4			
\vec{O} + offset	451	53.5	53.8	57.3	55.0	60.6	50.0	59.8	62.9			

Supervised												
	#param	PA	STIS	TimeSe	TimeSen2Crop		SA	DENETHOR				
Method	(x1000)	OA↑	MA↑	OA↑	MA↑	OA↑	MA↑	OA↑	MA↑			
UTAE [17]	$1\ 087$	83.4	77.7			_	_		_			
MLP + LTAE [16]	320	80.6	65.9	88.7	80.9	67.4	63.7	55.6	43.6			
OS-CNN [52]	4729	81.3	68.1	87.9	81.2	64.6	60.3	49.0	39.2			
TapNet [61]	$1\ 882$	77.4	69.5	83.9	83.0	69.4	62.5	61.5	60.6			
MLSTM-FCN [26]	490	44.4	10.9	58.7	44.0	56.1	47.9	58.2	48.3			
1NN [10]	0	65.8	40.1	43.9	35.0	60.7	54.9	56.7	48.2			
1NN-DTW [48]	0			32.2	23.0	_	—	—	—			
NCC [13]	77	56.5	48.4	57.4	49.5	51.3	46.4	61.3	55.5			
$\underline{\circ}$ + time warping	427	56.2	51.4	59.9	52.3	54.5	49.7	62 .4	56.4			
\vec{O} + offset	451	53.5	53.8	57.3	55.0	60.6	50.0	59.8	62.9			

Supervised												
	#param	PA	STIS	TimeSe	en2Crop		SA	DENETHOR				
Method	(x1000)	OA↑	MA↑	OA↑	MA↑	OA↑	MA↑	OA↑	MA↑			
UTAE [17]	1 087	83.4	77.7									
MLP + LTAE [16]	320	80.6	65.9	88.7	80.9	67.4	63.7	55.6	43.6			
OS-CNN [52]	4729	81.3	68.1	87.9	81.2	64.6	60.3	49.0	39.2			
TapNet [61]	$1\ 882$	77.4	69.5	83.9	83.0	69.4	62.5	61.5	60.6			
MLSTM-FCN [26]	490	44.4	10.9	58.7	44.0	56.1	47.9	58.2	48.3			
1NN [10]	0	65.8	40.1	43.9	35.0	60.7	54.9	56.7	48.2			
1NN-DTW [48]	0			32.2	23.0		—					
NCC [13]	77	56.5	48.4	57.4	49.5	51.3	46.4	61.3	55.5			
$\underline{\circ}$ + time warping	427	56.2	51.4	59.9	52.3	54.5	49.7	62.4	56.4			
\vec{O} + offset	451	53.5	53.8	57.3	55.0	60.6	50.0	59.8	62.9			

Conclusion

- Unsupervised: **our** prototype-based method outperforms
 - all current methods for unsupervised clustering of SITS on all 4 datasets
- Supervised: our prototype-based method
 - outperforms all supervised MTSC methods on the challenging DENETHOR
 - is less prone to overfitting

- Advantage of prototype-based methods:
 - Unsupervised and supervised training
 - Interpretability

Thank you!

https://arxiv.org/abs/2303.12533

https://github.com/ElliotVincent/AgriITSC

Elliot Vincent - 31/03/2023 - IGN Reading group -