

Learnable Earth Parser: Discovering 3D Prototypes in Aerial Scans

Romain Loiseau^{1, 2}

romain.loiseau@enpc.fr

Elliot Vincent^{1, 3}

Mathieu Aubry¹

Loic Landrieu^{1, 2}

École des Ponts ParisTech

INSTITUT NATIONAL

DE L'INFORMATION

S GÉOGRAPHIQUE

ET FORESTIÈRE

elliot.vincent@enpc.fr mathieu.aubry@enpc.fr

¹LIGM, ENPC ²LASTIG, ENSG/IGN ³Inria and DIENS

loic.landrieu@enpc.fr

Overview

Goal: provide a practical tool for analyzing 3D scenes without relying on application-specific user annotations.

Approach: a probabilistic reconstruction model that decomposes inputs into a small set of learned prototypical shapes.

Earth Parser Dataset: aerial scans in diverse environments.

Results: outperforms *state-of-the-art* unsupervised methods, visually interpretable, does not require any manual annotations.

Method

Scene reconstruction model:

$$\mathcal{M}(\mathbf{X}) = \bigcup_{\substack{s=1\cdots S \ a_s=1}} \mathcal{M}_s(\mathbf{X})$$
, with $\mathcal{M}_s(\mathbf{X}) = \mathbf{Y}_s^k = \mathcal{T}_s(\mathbf{X})[\mathbf{P}^k]$ if $b_s = k$.

Probabilistic modeling:

a and b as random variables following (multi)-Bernoulli distributions $p(a_s = 1) = \alpha_s$: proba. the slot s is activated $p(a_s = 1, b_s = k) = \beta_s^k$: proba. it is activated and selects prototype k

Training losses:

Slots average of the expected distance between $\mathcal{M}_s(\mathbf{X})$ and \mathbf{X} :

$$\mathcal{L}_{acc}(\mathcal{M}, \mathbf{X}) = \frac{1}{S} \sum_{s=1}^{S} \mathbb{E}_{a,b} \left[d\left(\mathcal{M}_s(\mathbf{X}), \mathbf{X} \right) \right].$$

Average over all points x of \mathbf{X} of the expected distance between x and its closest point in the reconstruction:

$$\mathcal{L}_{cov}(\mathcal{M}, \mathbf{X}) = \frac{1}{|\mathbf{X}|} \sum_{x \in \mathbf{X}} \mathbb{E}_{a,b} \left[\min_{s|a_s=1} d(x, \mathcal{M}_s(\mathbf{X})) \right].$$

The final loss is the sum of reconstruction losses and regularization:

$$\mathbb{E}_{\mathbf{X}}\left[\mathcal{L}_{acc}\left(\mathcal{M},\mathbf{X}\right)+\mathcal{L}_{cov}\left(\mathcal{M},\mathbf{X}\right)\right]+\lambda_{act}\mathcal{L}_{act}+\lambda_{slot}\mathcal{L}_{slot}+\lambda_{proto}\mathcal{L}_{proto}.$$

Acknowledgements

This work was supported by ANR project READY3D ANR-19-CE23-0007. The work of MA was partly supported by the European Research Council (project DISCOVER, number 101076028).

Learnable Earth Parser

Method Overview. Our model approximates an input point cloud \mathbf{X} with S slot models. Each slot maps \mathbf{X} to an affine 3D deformation $\mathcal{T}_s(\mathbf{X})$, a slot activation probability α_s , and the joint probabilities $\beta_s^1, \dots, \beta_s^K$ of the slot being activated and choosing one of the K prototype point clouds $\mathbf{P}^1, \dots, \mathbf{P}^K$. The output $\mathcal{M}_s(\mathbf{X})$ of an activated slot s is obtained by applying $\mathcal{T}_s(\mathbf{X})$ to its most likely prototype.

Quantitative Results

	Ø _© .	Semantic	Crop fields		Forest		Greenhouses		Marina		Power plant		Urban		Windturbines
	%		Cham.	mloU	Cham.	mloU	Cham.	mloU	Cham.	mloU	Cham.	mloU	Cham.	mloU	Cham.
k-means (i,z)	X	√		93.8		71.5		39.3		41.4		42.8		56.5	
SuperQuadrics [1]	3D	X	0.86		1.04		0.60		0.93		0.58		0.40		13.5
DTI-Sprites [2]	2.5D+i		6.10	83.2	14.59	40.2	5.36	42.0	6.16	41.4	5.36	29.0	2.99	47.3	36.19
AtlasNet v2 [3]	3D+i		1.07	43.1	1.58	71.4	0.56	49.1	0.73	42.1	0.45	41.6	0.63	48.8	8.80
Ours	3D+i		0.72	96.9	0.88	83.7	0.40	91.3	0.82	78.7	0.44	52.2	0.29	83.2	6.65

Meaningful and Interpretable Prototypes

Windturbines (3/5) Marina (3/3) Power plant (3/4) Greenhouses (3/5)

Learned Prototypes. Selected learned prototypes on different scenes. We show three prototypes among those selected by our post-processing selection.

Qualitative Results

Bibliography

[1] Paschalidou et al. Superquadrics revisited: Learning 3d shape parsing beyond cuboids. CVPR19. [2] Monnier et al. Unsupervised layered image decomposition into object prototypes. ICCV21. [3] Deprelle et al. Learning elementary structures for 3D shape generation and matching. NeurIPS19. [4] Loiseau et al. Representing Shape Collections with Alignment-Aware Linear Models. 3DV21.